首页> 外文OA文献 >Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations That Arise from Nonlinear Two-Point Boundary Value Problems
【2h】

Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations That Arise from Nonlinear Two-Point Boundary Value Problems

机译:非线性两点边值问题引起的Fredholm积分方程的正交方法解的准确性的提高

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + definite integral of g(x, t)F(t,y(t))dt with limits between 0 and 1,0 less than or equal to x les than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integral equations arise, e.g., when one applied Green's function techniques to nonlinear two-point boundary value problems of the form y "(x) =f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and y(l) = y(sub l), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trepezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal rule, thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.
机译:在本文中,我们关注形式为y(x)= r(x)+ g(x,t)F(t,y(t))dt的定积分的非线性Fredholm积分方程的高精度正交方法解。极限在0到1,0之间且小于或等于x les小于或等于1,其中内核函数g(x,t)是连续的,但其偏导数在x = t上具有有限的跳跃不连续性。例如,当将格林函数技术应用于形式为y“(x)= f(x,y(x))的非线性两点边值问题时,会出现此类积分方程,0小于或等于x小于或等于等于1,且y(0)= y(sub 0)且y(l)= y(sub l)或其他线性边界条件特别适用于此类方程式的正交方法是基于精度较低的梯形法则,通过分析相应的Euler-Maclaurin展开,我们得出适当的校正项,将其添加到梯形法则中,从而获得新的任意高精度的数值正交公式,也可用于定义正交证明了积分方法的存在性和唯一性定理,并证明了它们的精度与基本积分公式的精度相同,并通过正交方法得到了非线性系统的解。 h个逐次逼近,其收敛性也得到证明。结果通过数值示例得到证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号